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We discuss the implication of the introduction of an extra field to the dynamics of a
scalar field conformally coupled to gravitation in a homogeneous isotropic spatially flat
universe. We show that for some reasonable parameter values the dynamical effects are
similar to those of our previous model with a single scalar field. Nevertheless, for other
parameter values new dynamical effects are obtained.
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1. INTRODUCTION

Recently, the authors investigated (Gunziget al., 2000, 2001) the dynamics
of a spatially flat universe dominated by a self-interacting conformally coupled
scalar field according to the action

S= 1

2

∫
d4x
√−g

(
−R

κ
+ gµν∂µψ∂νψ − 2V(ψ)+ ξRψ2

)
, (1)

whereR denotes the scalar curvature,ψ is the scalar fields,κ ≡ 8πG (G being
Newton’s constant). A cosmological constant, if present, is incorporated in the
scalar field potential

V(ψ) = 3α

κ
ψ2− Ä

4
ψ4− 9ω

κ2
. (2)
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Many new and interesting dynamical phenomena were discovered and its
cosmological interpretation were discussed. Special attention was given to the
conformal coupling case withξ = 1/6. This choice for the coupling constant
is motivated by physical arguments from particle theories (Faraoni, 1996, 2000;
Sonego and Faraoni, 1993) and from scale invariance at the classical level (Callan
et al., 1970). The nonminimal coupling is also required by first loop corrections
(Birrell and Davies, 1980; Ford and Toms, 1982; Nelson and Parangaden, 1982;
Parker and Toms, 1985). One interesting effect discussed in Gunziget al. (2000,
2001) is superinflation characterized bẏH > 0, and that can only be achieved
by a nonminimal coupling. Here we consider the robustness of these dynamical
phenomena with respect to the introduction into the model of a second massless
scalar field. We also discuss some new types of asymptotic solutions arising from
the introduction of the extra field.

The structure of the paper is the following: in Section 2 we present the model
and some definitions. The fixed points and their stability are given in Section 3.
Additional asymptotic solutions are discussed in Section 4 and the paper is closed
with some concluding remarks in Section 5.

2. THE MODEL

We consider the conformally coupled theory described by the action

S= 1

2

∫
d4x
√−g

(
−R

κ
+ gµν∂µψ1∂νψ1− 2V1(ψ1)

+1

6
Rψ2

1 + gµν∂µψ2∂νψ2− 2V2(ψ2)+ 1

6
Rψ2

2 + βψ2
1ψ

2
2

)
. (3)

We use the full conserved scalar field stress-energy tensor

Tµν = ∂µψ1∂νψ1− 1

6
(∇µ∇ν − gµνh)

(
ψ2

1

)+ 1

6
Gµνψ

2
1

− 1

2
gµν (∂αψ1∂

αψ1− 2V1(ψ1))

+ ∂µψ2∂νψ2− 1

6
(∇µ∇ν − gµνh)

(
ψ2

2

)+ 1

6
Gµνψ

2
2

− 1

2
gµν (∂αψ2∂

αψ2− 2V2(ψ2))− β
2
ψ1

1ψ
2
2 (4)

(where Gµν is the Einstein tensor), thereby avoiding the use of any effective
coupling constant in the Einstein equations. Moreover, this consideration of the
energy–momentum tensorTµν together with an adequate self-consistent treatment
of Einstein’s and Klein–Gordon equations eliminates the artificial pathologies as-
sociated, in Einstein’s equations, with the “critical factor” 1− (ψ2

1 + ψ2
2)κ/6. The
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consensual attitude encountered in the literatures is indeed that the dynamics is
ill-defined when this factor is negative or vanishes. That this is not the case follows
from the fact that the Klein-Gordon equations, when properly combined with Ein-
stein’s equations, completely destroy this factor and its dynamical consequences.
This property holds for the homogeneous as well as inhomogeneous cases. The
important facts will be presented in a forthcoming publication.

Let us consider the following form for the potentialsV1 andV2:

Vi (ψi ) = 3αi

κ
ψ2

i −
Äi

4
ψ4

i −
9ωi

κ2
. (5)

The parameterαi is related to the mass of the particle bymi =
√

6αi /κ. As in
the first papers, we are interested in the dynamics of a spatially flat Friedmann–
Robertson–Walker universe with line elementds2 = dτ 2− a2(τ )(dx2+ dy2+
dz2). Also we will restrict the potential in (5) to the caseα1 ≡ α, α2 = 0,Ä1 ≡ Ä,
Ä2 = 0, ω1 ≡ ω, andω2 = 0. This corresponds to a massive field coupled to a
massless field. More generic cases will be considered in a forthcoming publication.
The energy density and pressure associated to the scalar fields are

σ = σ1+ σ2− β
2
ψ2

1ψ
2
2 , (6)

p = p1+ p2+ β
2
ψ2

1ψ
2
2 , (7)

where

σi = ψ̇
2
i

2
+ 1

2
H2ψ2

i +
1

2
H∂τ

(
ψ2

i

)+ Vi (ψi ), (8)

pi = ψ̇
2
i

2
− 1

6

[
2H∂τ

(
ψ2

i

)+ ∂2
ττ

(
ψ2

i

)]− 1

6
(2Ḣ + 2H2)ψ2

i − Vi (ψi ). (9)

The action (3) then implies the trace equation

R= −6(Ḣ + 2H2) = −κ(σ − 3p), (10)

the energy constraint

3H2 = κσ = 0, (11)

and the Klein-Gordon equations for the two scalar fields,

ψ̈1+ 3H ψ̇1−
1

6
Rψ1+ dV1

dψ1
+ βψ1ψ

2
2 = 0, (12)

ψ̈2+ 3H ψ̇2−
1

6
Rψ2+ dV2

dψ2
+ βψ2

1ψ2 = 0. (13)
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Using the Klein-Gordon equations (12) and (13) and the expressions forσ

and p we obtain

σ − 3p = 4(V1+ V2)− ψ1
dV1

dψ1
− ψ2

dV2

dψ2
. (14)

This simple form holds for any interaction of the formβψγ

1 ψ
δ
2, providedγ + δ =

4. Finally, the energy constraint is

3H2 − κσ = 3H2− 1

2
κψ̇

2
1−

1

2
κH2ψ2

1 − κHψ1ψ̇1− κV1

− 1

2
κψ̇

2
2−

1

2
κH2ψ2

2 − κHψ2ψ̇2− κV2+ 1

2
κβψ2

1ψ
2
2 = 0. (15)

Now solving Eqs. (14) and (15) for the derivativesḢ andψ̇1 we obtain

Ḣ = −2H2+ 2

3
κV1+ 2

3
κV2− 1

6
κψ1

dV1

dψ1
− 1

6
κψ2

dV2

dψ2
, (16)

ψ̇1 =
1

κ
(−κHψ1±

√
G), (17)

where

G ≡ 6κH2− κ2ψ̇
2
2− 2κ2Hψ2ψ̇2− 2κ2(V1+ V2)− κ2βψ2

1ψ
2
2 − κ2H2ψ2

2 .

(18)

The regionG < 0 in phase space is physically forbidden.
Using Eq. (17) allows to rewrite system [(6)–(10)] in the following equivalent

form:

Ḣ = −2H2+ κ(σ − 3p)

6
, (19)

ψ̇1 = −Hψ1±
√

G

κ
, (20)

ψ̈2 = −3H ψ̇2+
1

6
Rψ2− dV2

dψ2
− βψ2

1ψ2. (21)

The system of ODE [(10), (12), (13)] is a five-dimensional system, but owing
to energy constraint (11) the real phase space is constrained into a four-dimensional
manifold. The situation is similar to the one-field case, where the original system
is three dimensional, but the energy constraint enforces the motion to take place
on a two-dimensional manifold. In the one-field case, the plane (H, ψ) is di-
vided in to sectors by some straight lines, corresponding to regions of distinct
state equations for the fluidψ . In the present case, the projection of the real
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phase space onto the (H, ψ1) plane conserves some of those sectors. For example,
from

σ − 3p = 6αψ2
1 , (22)

valid for any quartic interaction potential betweenψ1 andψ2, one can see that the
regionψ1 = 0 still corresponds to a state equation of pure radiation.

3. FIXED POINTS

In our case De Sitter solutions correspond to fixed points except for the fixed
point at the origin. The fixed points are obtained from the conditionsψ̇1 = ψ̇2 = 0.
The stability of the fixed points is determined from the linearized equations in a
neighborhood of each point, except for special cases discussed below. For all the
fixed points we haves1, s2, s3 = ±1. The existence conditions for the fixed points
is such that the arguments of the square roots are positive:

• Type A

H = s1

√
3

κ

√
−β
α + β , (23)

ψ1 = s2

√
6

κ

√
ω

α + β , (24)

ψ2 = s3

√
6

κ

√
ω(Ä+ β)− α(α + β)

β(α + β)
. (25)

• Type B

H = s1

√
−3ω

κ
, (26)

ψ1 = ψ2 = 0. (27)

• Type C

H = s1

√
3

κ

√
α2− ωÄ
Ä− α , (28)

ψ1 = s2

√
6

κ

√
α − ω
Ä− α , (29)

ψ2 = 0. (30)

Fixed points of Type B are on theG = 0 surface.
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In order to discuss the stability of these fixed points let us consider the generic
case given by a system of the form

ẋi = Fi (x1, . . . , xn) ≡ F(x), i = 1, . . . , n. (31)

A fixed pointx̄ satisfiesFi (x̄) = 0. Its stability is usually established by linearizing
(31) in a neighborhood of̄x. In this way we writex = x̄ + δx and obtain (31):

d δx

dt
= Jδx +O(δx2), (32)

whereJ is defined by

Ji j ≡ ∂Fi

∂xj

∣∣∣∣
x=x̄

, (33)

and δx ≡ (δx1, . . . , δxn). If Det(J) 6= 0 and if the eigenvaluesλi of J are such
that Re(λi ) 6= 0 then the Hartman–Grobmann theorem ensures that the linearized
system obtained by retaining only linear terms in (32) is topologically equivalent
to the original system (31) at a neighborhood of the fixed point. The real parts of
the eigenvalues then determine the local stability of the fixed points. The stability
of the fixed points on theG = 0 surface cannot be studied using this method
as Det(J) = 0. To overcome this problem we will consider the system formed by
Eqs. (12), (13), and (16). The only points to be considered separately are of Type B
and their stability is studied by other methods.

Equations (12) and (13) can be rewritten as a first-order equations by introduc-
ing the new variablesφ1 ≡ ψ̇1 andφ2 ≡ ψ̇2. In this way we identify the variables
xi in (31) with (H, ψ1, φ1, ψ2, φ2) and obtain from (33) the following form for the
J matrix computed at the fixed point of coordinates (H̄ , ψ̄1, φ̄1, ψ̄2, φ̄2):

J =


−4H̄ 2αψ̄1 0 0 0

0 0 1 0 0
0 C1 −3H̄ −2βψ̄1ψ̄2 0
0 0 0 0 1
0 −2(α + β)ψ̄1ψ̄2 0 C2 −3H̄

, (34)

with

C1 = −βψ̄2
2+ 3(Ä− α)ψ̄2

1+
6

κ
(ω − α) (35)

and

C2 = −(α + β)ψ̄2
1+ 6

ω

κ
. (36)

The eigenvalues ofJ are

λ = −3

2
H̄ ± 1

2

√
9H̄ + 9A± 2

κ

√
B, (37)
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λ = −4H̄ , (38)

where the± signs are to be considered independently of each other,

A = 2

9
(3Ä− β − 4α)ψ̄2

1−
2

9
(β + 4α)ψ̄2

2+
4

3κ
(2ω − α) (39)

and

B = κ2
(
β2ψ̄

2
2+ (20αβ + 14β2− 6βÄ)ψ̄2

1ψ̄
2
2

+ (4α2+ β2− 4αβ − 12Äα + 6βÄ+ 9Ä2)ψ̄4
1

)
. (40)

A fixed point is stable, unstable, or a saddle point if the real parts of the five
eigenvalues are all negative, all positive, or have different signs, respectively. Points
of Types A and C are saddle points. The stability of fixed points of Type B is
discussed in the next section.

4. ASYMPTOTIC DYNAMICS

Two kinds of asymptotic dynamics are more relevant for our model: attractive
fixed points and diverging solutions. For the one-field model the fixed point at
H = ψ = 0 acts as a an attractor and plays an important role in our approach
(Gunziget al., 2000, 2001). The fixed point at

ψ1 = ψ̇1 = ψ2 = ψ̇2 = 0 and H =
√
−3ω/κ (41)

has a similar role. For this purpose we will consider her the special case of a
nonnegative cosmological constantω ≤ 0. This implies thatḢ ≥ 0 for H = 0 as
σ − 3p is positive forω negative and therefore the regionH > 0 is invariant under
the dynamics. Let us now consider the function

L = 1

2
ψ̇

2
1+

1

2

β

β − α ψ̇
2
2+

3α

κ
ψ2

1 +
1

4
(α −Ä)ψ4

1 −
1

2
βψ2

1ψ
2
2 . (42)

Its total time derivative modulo Eqs. (12), (13), and (16) is given by

L̇ = −3H

(
ψ̇

2
1+

β

β − α ψ̇
2
2

)
+ 6ω

κ
ψ1ψ̇1+

6βω

(β − α)κ
ψ2ψ̇2. (43)

For parameter values such thatω = 0, β < 0, andÄ ≤ α, the functionL is a
Lyapunov function for the fixed point (41) and satisfy the properties

L ≥ 0 (44)

and

L̇ ≤ 0. (45)
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Fig. 1. Example of solutions projected in the (H, ψ1) plane forω = 0. The parameter values
used areα = 1,Ä = 1/2, m= 1,β = −1.2345. The solutions are attracted to the fixed point at
the origin.

The equality in (44) and (45) is valid only on the fixed point. Hence the fixed point
is a global attractor for the whole regionH ≥ 0 (see Fig. 1). Numerical simulations
indicate that the same is also true forω < 0, as shown in Fig. 2.

For other parameter values numerical solutions point for an asymptotic di-
verging solution (see Fig. 3). For simplicity, let us consider the caseω = 0 and the
ansatz

H = δψ1, (46)

with δ a constant. Hence

Ḣ = δψ̇1. (47)

Fig. 2. Example of solutions projected in the (H, ψ1) plane forω = −0.5. The other parameter
values are the same as in Fig. 1. The solutions are attracted to the fixed point atψ1 = 0 and
H = √−3ω/κ.
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Fig. 3. Solution withω = −0.3. The remaining parameters are as in Fig. 1. Some solutions are
diverging while others are still attracted to the fixed point at the origin. The quantitiesH ,ψ1, and
ψ2 diverge in a finite time.

From Eqs. (16), (17), and (47) we obtain

δψ̇1 =
1

6
ψ2

1

(− 12δ2+m2
1κ
)
, (48)

which is a closed equation forψ1, with solution

ψ1(t) = 6δψ1(0)

6δ + (12δ2− κm2
1

)
ψ1(0)t

, (49)

whereψ1(0) is the initial condition forψ1 at t = 0. Using Eq. (12) and solution
(49) easily yieldsψ2(t):

ψ2(t) = ±
√
− 2

β

√
36δ4− 12δ2m2

1κ − 18Äδ2+m4
1κ

2 ψ1(0)(
12δ2− κm2

1

)
ψ1(0)t + 6δ

. (50)

With the expressions forψ1(t) andψ2(t) it is straightforward (but a little
bit cumbersome) to obtain the proportionality constantδ from the remaining
equation (17):

δ = ±1

6

√
6κm2

1− 9β + 3
√
−12βκm2

1+ 9β2. (51)

This value forδ agrees with the results of numerical integrations. It is important to
note at this point that not necessarily every solution has the asymptotic behavior of
Eq. (46). From numerical investigations it seems to exist a threshold in the initial
values ofψ2 andψ̇2 such that above it the solutions converge asymptotically to
the behavior obtained above. Below this threshold, solutions near the origin in the
(H, ψ1) plane are attracted toward it, exhibiting a similar behavior to the case of
a single massive scalar field.
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5. CONCLUDING REMARKS

The introduction of an extra massless field conserve some essential features
of the dynamics of the one-field model of Gunziget a. (2000, 2001), for some
parameter values, particularly the spiraling solution near the fixed point at the
origin. Nevertheless some new type of solutions exist that have no analog in the one-
field case. For two self-interacting coupled fields the behavior is even more richer
and a more exhaustive study is under preparation. Nevertheless, for some parameter
ranges, new dynamical effects are obtained which modify the model in a substantial
way. A discussion of which parameter values are of physical relevance is important
for the future development of the present approach.
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